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SUMMARY 
The Kalman filter theory has been used to derive a set of difference equations by which the lateral position of a ship 
relative to the desired (straight) course can be estimated from measured yaw-angle values containing noise. Special 
attention has been paid to the standard deviation of the estimation error. 

1. Introduction 

The position of a ship following a straight course is determined at intervals to make certain 
that the course is maintained. For this purpose several different types of electronic equipment 
are available, such as the Decca navigation system. The helmsman is instructed between two 
position determinations to keep the ship at the prescribed yaw angle. This, however, is no 
guarantee that the ship is steaming along the desired track. For, she is subjected to several, 
partly stochastic, disturbances, such as wind, current and waves, and the lateral movement of 
the ship between two position determinations thus is not known exactly. 

In this paper an optimal estimate of the lateral position of a ship following a prescribed 
straight course is made on the basis of disturbed yaw-angle measurements. The estimate is 
obtained by application of the Kalman filter theory [3]. In the present problem the disturbance 
vector is multiplied by an input matrix, which gives a slight modification of the filter derived in 
[3]. 
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Figure 1. 

It is supposed that at the moment t =0  the lateral position y of the ship relative to the desired 
track is normally distributed, with known mean and variance (Figure 1). From that moment, the 
ship steaming at the prescribed yaw angle, the estimate of the lateral position is made. Attention 
will be paid particularly to the standard deviation of the estimation error. Pitching, rolling and 
heaving of the ship are neglected. 

2. Description of the system 

The dynamical behaviour of a ship in the horizontal plane can be described sufficiently exact 
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by a simultaneous system of linear differential equations if the deviations from the equilibrium 
state are small. 

This system is represented, according to [4], by: 

( M -  Y~)b- Y~v-  Y j ' + ( M U - -  Y~)r = Yo6+ Y. (2.1) 
- N f f o -  Nvv+(I~-N~)?-Nrr  = Naa+ N, , 

where v(t) is the transverse velocity of the ship (see also Figure 1), r(t) the yaw angular velocity 
and 5(t) the rudder angle. Y~(t) and N,(t) are, respectively, the external force and the moment 
acting on the ship. A dot above a symbol denotes its derivative with respect to time. The coef- 
ficients Y~, N~, Ya, etc. of the system are dependent on the ship considered and on her forward 
speed. 

The equations can be written in a matrix notation: 

with 

I z -  

A first-order approximation of the velocity of the ship in the Y-direction (Figure 1) is 

3) = v + Ug, (2.3) 

Finally, the yaw angle 0 satisfies 

= r (2.4) 

By combining (2.2), (2.3) and (2.4), the following state equation is obtained: 

= A* a( t )+O*u( t ) ,  (2.5) 
where x'(t)=(v(t), r(t), O(t), y(t)) is the state vector*, u'(t)=(Y,(t), N,(t)) is the vector of the 
external disturbances, r  is a 4 x 4 system matrix, A* a 4 x 1 input vector and O* a 4 x 2 input 
matrix. 

The matrices of the state equation contain the coefficients and the forward speed of the ship 
and can easily be determined if the ship and her forward speed have been chosen (see section 6). 

To make the system suitable for digital computation it is put in a discrete form by a well-known 
technique [5]. With a sampling period of T seconds the following state equation in discrete 
form is obtained: 

x(k + 1) = ~bx(k) + Aa(k) + Ou(k), (2.6) 
where 

�9 =e~*T;  A = eO*~dz A*; O = e~'**dz O* (2.7) 
0 

and where k is the tiine index. 
As mentioned in the introduction, the estimate of the lateral position of the ship is made on 

the basis of yaw-angle measurements containing noise. 
Thus for the observation scalar z(t) is written: 

z(t) = ~f(t) + w(t) = c" x (t) + w(t) , (2.8) 

where c' = (0, 0, 1, 0) and w (t) is the measuring noise scalar. This equation can easily be reduced 
to the discrete form 

z(k) = c'x(k) + w(k). (2.9) 

* The transpose of a vector or matrix will be denoted by a prime. 
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3. Introduction to the estimation problem 

The input to system (2.6) consists of the rudder angle 5(k) and the disturbance vector u(k). 
The latter contains both deterministic disturbances (wind, current) and stochastic disturbances 
(waves). 

As the system is linear, its response can be obtained by separately adding up the responses 
to the deterministic disturbances (including the rudder angle 6 (k)) and the responses to stochas- 
tic disturbances. From now on only the stochastic disturbances, due to the waves, will be 
considered. This means that u(k) now is a stochastic vector. The probability distribution of 
this vector will be specified later. 

Thus, as starting point of the system we now have: 

~ ( k +  1) = ~ ( k ) +  o u ( k ) ,  (3.1) 

the observations being described by (2.9): 

(k) = c'~ (k) + w(k).  

With respect to u(k) and w(k), the following assumptions are made:  
- u(k) and w(k) are mutually independent and normally distributed. Both are independent 

from one time instant to the other and independent of the initial state x(0). The mean and 
variance are: 

E[u(k)] : 0 ; E [w(k) ]  = 0 ; 

E[u(k), u(k)'] = Q ;  (3.2) 

E [w (k) z] = q ; 

where Q is a positive definite 2 x 2 diagonal matrix and q a positive scalar. 
- The initial state x (0) is a normally distributed stochastic vector with 

E[x(0)]  = 0 ; E[x(0) ,  x(0)'] = Qo, (3.3) 

where Qo is a positive definite 4 • 4 diagonal matrix. 
The estimation problem can now be formulated as follows : given the observed values z (0)... 

z (k), find an estimate 2 (k) of x (k) which minimizes some performance function. An obvious way 
of choosing 2(k) is to require that the value chosen should minimize the mean square of the 
estimation error Yc(k)=x(k)-2(k). The optimal estimate of x(k) is then obtained from: 

rain E { Ix (k) -  2 (k) ] '  Ix (k ) -  2 (k) ] }, (3.4) 

given a set of observed values z(0)...z(k). From this follows the estimated value of x(k) [2]" 

2(k) = E {x(k) l z(0)...z(k)}. (3.5) 

For ease of reference, hereafter the symbols 2(k[j) and 2(kIj) will be used to represent, 
respectively, the estimate and the estimation e~ror of x(k), given the observations z(i) up to 
and including the time instant .j< k. 

4. Estimation of the initial state 

The estimated initial state follows from (3.5): 

2(0) = E[x(0)[ z(0)] .  

As x(0) and z(0) are normally distributed, this expectation can be separated into [1]: 

E [ x ( 0 ) l z ( 0 ) ]  = E[~,(0)]  + E [ ~ ( 0 ) ;  z(0)'l ~ [ z ( 0 ) 2 ] - l [ z ( 0 ) - E [ z ( 0 ) ] ]  �9 

Since E [x (0)] = 0 and E [w (0)] = 0 and. henc~ 

(4.1) 

E [z(0)]  = 0, this form can be reduced to: 
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s (0) = E Ix (0) 1 z (0)] = K (0) z (0), (4.2) 
where 

K(O) = Qoc[c' Ooc + q] - I , (4.3) 

being a 4 x 1 vector obtained by applying the equations (2.9), (3.2) and (3.3) to (4.1). 
The estimation error is given by: 

~Z (0) = x (0) - E [x (0) 1 z (0) ] 

= i x -  K (0) c']  ~ (o) - K (0) w (0) ,  

where I is the 4 x 4 identity matrix. Hence the covariance matrix of the estimation error satisfies : 

P(0) = E [2(0), 2(0)'] = [ I -  K(0)c']  Qo [I - K(0)c '] '  + qK(O)K(O)', 

which may be reduced to 

P (0) = [I - K (0) c'] Q o. (4.4) 

5. T h e  e s t imat ion  o f  x (k)  

In this section it will be shown that the best estimate 2(kl k) of x(k) can be obtained from the 
estimate 2 ( k -  l lk - 1) and the observed value z(k). Only the main features will be treated. For 
a more detailed treatment of the concepts used the reader is referred to [21. Suppose that the 
values z(O).. .z(k-1) are known and that 2 ( k - i I  k - 1 )  is determined. It is possible to ortho- 
gonalize the sequence z(O)...z(k-1), that is to say there exists an orthonormal sequence 
y(O)...y(j), j <  k - i ,  with the property that each y(i) is a linear combination of z(O)...z(k-1) 
and vice versa. Therefore we can consider the linear space Z ( k -  1) to consist of all linear com- 
binations 

k - 1  

E aiz(i) �9 
i=0  

The new observed value z(k), which does not necessarily belong to Z ( k -  1), can be uniquely 
decomposed into two parts, as follows: z(k) =~(kl k -  1) + 5(kl k -  1) with ~(kl k -  1) ~ Z(k= 1) 
and 5(kl k - 1 )  orthogonal to Z ( k - 1 ) .  In fact ~(k]k-1)  can be considered to be the best 
estimate of z (k), given z (0)...z (k - 1), i.e. ~ (k] k - 1) = E [z (k)] z (0)...z ( k -  1)]. The linear space 
Z(k) is thus generated by Z ( k - 1 )  and 5(k lk-1) .  

It follows from the above that, with substitution of the system equations, (3.1), the estimate 
of x(k) can be written as 

2(kl k) = E [x(k)l Z(k)-] = E[x(k)l Z ( k -  1)1 + E[x(k)[ @(kl k -  1)1 (5.1) 

= 02(k - 11 k -  1 )+E Ix (k)l 5(kl k -  1)] ,  

considering that u (k - 1) is independent of z (0)...z (k - 1), so that E [u (k - 1)1Z ( k -  1) ] = 0. In 
the same way as in the estimation of the initial state (see eq. (4.1)) the term E [x (k)l 5(k]k - 1)1 
is separated into 

E [x (k) l e (kl k - 1) ] = E Ix (k) ] + E Ix (k), e (kl k - 1) ' ] .  

- E [5(kl k -  1)23 - 1. [5 (k lk -  1) - E [~(k] k -  1)] 3. (5.2) 

Application of (2.9), (3.1) and (3.2) yields the following relations: 

E Ix(k), 5(kl k -  1)'] = l O P ( k -  1)O'+ OQO'] c (5.3) 

E [~(klk - 1 ) 2 1 - 1  = [C' O P ( k -  1) O'c + c' OQO'c + q] -1 (5.4) 

E [e(kl k -  1)] = 0 ,  (5.5) 
where 

P(k) = E[2(kl k), 2(kl k)'] 
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being the 4 x 4 covariance matrix of the estimation error, for which a more useful equation will 
be derived later. 

As in this case E[x(k)]=O, by substitution of (5.2) into (5.1) and application of (5.3), (5.4) 
and (5.5) we find that: 

2(k[k) = q~2(k - l l k -1 )+K(k )~ (k l k -1 ) ,  (5.6) 

where 

K (k) = S (k) c [c'S (k)c + q] -1 (5.7) 

S(k) = [ ~ P ( k -  1 ) ~ ' +  OQO"] , (5.8) 

K(k) being a 4 x 1 vector and S(k) a 4 x  4 matrix. 
From 

f f (klk-  1) = z(k)-E[z(k)lz(O) ... z ( k -  1)] 

= z(k)-c '  ~I'2(k- l l k - 1 )  

we can conclude that 

2(klk) = r  

= A (k) 2 (k - 1 [k - 1) + K (k)z (k), (5.9) 

where 

A (k)= [ I -K(k)c ' ]  q~ (5.10) 

being a 4 x 4 matrix. 
From (5.9)it follows that for the estimation ofx(k) all the previous observations z(0) ... z ( k -  1) 

can be summarized by 2 ( k -  l [ k -  1). The term ~ 2 ( k -  1 ] k -  1) can be interpreted as the a priori 
estimate of x(k) based on 2 ( k - 1 ] k - 1 ) .  The second term in the first equation of (5.9)is the 
correction to the a priori estimate due to the actual value of the observation z(k). The matrix 
K(k) is weighting the difference between the observed value z(k) and its a priori estimate. 

It should be noted, however, that equation (5.9) yields for the system (3.1), the non-stochastic 
inputs not included. If these are involved the estimate will have the following form: 

2(k] k) = [ I -  K(k)c'] [q ,2 (k -  11 k -  1)+ Ab(k-  1)+ r ?  ( k -  1)] + K(k) z(k) , 

where 6 ( k - 1 )  is the rudder angle and ~ ( k - 1 )  the non-stochastic disturbances (wind and cur- 
rent) acting on the ship. 

There remains to be derived a more useful equation for the covariance matrix P(k) of the 
estimation error. Substitution of (5.9) and (5.10) into 2 (kl k) = x (k) - 2 (k] k) results in a recursive 
equation for the estimation error: 

~(k[ k) = [ l -K(k)c ' ]  [~)? (k-  1F k -  1)+ Ou(k-  1)] -K(k)w(k) .  (5.11) 

Thus there is obtained 

P(k) = E[Yc(klk), ~(klk)'] 

= [I - K (k) e'] S (k) [-I - K (k) c'] '  + q. K (k) K (k)', (5.12) 

which can be reduced to 

P(k) = [ I -  K(k)c"] S(k) . (5.13) 

6. Calculations 

The calculations can be made after specification of the covariance matrices in (3.2) and (3.3) 
and the coefficients of the ship (2.1). The ship considered here is one of the Todd Sixty Series. 
The dimensions are: 
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Length between perpendiculars 168.- m 
Breadth 24.- m 
Draught 9.59 m 
Volume of displacement 26 970 m 3 

The forward speed is 8.- m/s. which corresponds to a value of 0.20 of the Froude number. Using 
these data, the coefficients of (2.1) can be determined from [4]. Unfortunately, these coefficients 
are dependent on the frequency of the forces and moments acting on the ship. (For some exam- 
ples see [4].) Therefore as nominal values we use the values at very low frequencies. To include 
the effect of higher frequencies, the nominal values are varied. Some additional remarks on this 
procedure will be made further on this section. 

For all the calculations a sampling period T =  5 seconds is chosen. Now it is possible to 
obtain the elements of the matrices �9 and O of (3.1). They will not be specified here. 

Next the covariance matrices Q and Qo have to be specified. The diagonal elements of Q 
represent the variance of the force and of the moment exerted on the ship by the waves. The 
values of these variances have been obtained from [6] ; they hold for some sea state. Averaged 
over the sampling period they are: 

variance of the force: 101~ (kg) 2 

variance of the moment:  64.1012 (kgm) 2 . 

The diagonal elements Qo indicate the uncertainty about the elements of the initial state vector. 
We shall use the notation qo11, qo22, qo33 and qo,~4 for the variances of v(0), r(0), ~(0) and 
y(0), respectively. To express the uncertainty in respect of the values v(0) and r(0) (which are 
not measured) rather large values are chosen for qol ~ and qo22, namely 100 m2/s z for qo~ 
and 25 1/s 2 for qo22. For the other elements, which are measured or specified at t=0 ,  the 
following values are chosen: 

qo33 = 0.0025 and qo44 = 10 000 m 2 . 

The values chosen so far will be kept constant, which means that the estimate is made for 
a particular ship in a particular sea state and with specific assumptions about the initial state. 
In order to investigate how the estimate is affected by the variation of the coefficients of the 
ship in relation to the nominal values and by the variance q of the noise contained in the 
observation, these are chosen so as to have different values, namely: 

TABLE 1 

q R S q R S 

1 0.0005 0 0 4 0.0005 0 + 0.2 

2 0.00005 0 0 5 0.0005 0 - 0.2 

3 0.000005 0 0 6 0.0005 + 0.2 - 0.2 

The cases 1, 2 and 3 represent the effect on the estimate of the noise contained in the observa- 
tion. The cases 4, 5 and 6 include the effect of a variation of the coefficients of the ship. These 
coefficients are divided in  two groups, namely group R ( M -  Y~, Y;, N~, I z -  N~) and group 
S (Y~, Nr, M U -  Yr, Nv). The values in the respective column are the factors by which the 
coefficients are varied. This division is made because the dynamic stability of the ship is deter- 
mined mainly b y  the coefficients in group S. More exactly, the ship may be considered.to be 
more stable in case 4 than in case 5. For  each of these cases the relevant quantities, i.e. the 
matrices A(k), K(k) and P(k), can be calculated with the aid of equations (5.8), (5.7), (5.10) 
and (5.13) in that order. The first step is taken with (4.3) and (4.4). 

The estimate of the lateral position of the ship relative to the desired course is now obtained 
from (5.9): 
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.~(k+l)=A,~(k)~(k)+A42(k)P(k)+A43(k)~(k)+A44.(k).~(k)+K4(k)z(k ) , (6.1) 

where A4i(k); i=  1 (1)4 are elements of the matrix A (k) and K 4 (k) is an element of the 4 x 1 vector 
K(k). 

The standard deviation of the estimation error can easily be determined from (5.13): 

st(k) = {E [37(k) 2] }r = {P44(k)} ~ . (6.2) 

It is assumed that the estimate covers a period of 900 seconds. 
The calculations were carried out on the X-8 digital computer of"Reactor Centrum Petten" 

in the Netherlands. 
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;ure 5. Transient response of the coefficient A41(k ). 

7. Results 

As expected, the standard deviation sy(k) increases with time (Figures 3 and 4); the lateral 
movement of the ship not being observed, the uncertainty of the lateral position increases. 
Both the variance q of the noise contained in the observation and the values of the coefficients 
of the ship affect the course of the standard deviation; see Figures 3 and 4 for the results. The 
smaller the permitted variance q, the better the course of the standard deviation st(k). However, 
the yaw angle measurement sensors then become more expensive. The influence of the coef- 
ficients in group R (case 6 in Table 1) is hardly significant, as became apparent also from other 
calculations not reported here. 

We might conclude from Figure 4 that the estimate is better according as the dynamical 
stability of the ship is higher (compare cases 4 and 5). This, however, is not true in general. 
Other calculations showed that even for a course-unstable ship a good estimate can be made. 
It was also found that larger changes in the coefficients in groups R and S do not greatly 
affect the estimate; all results were better than those for case 5 represented in Figure 4. This 
case may be considered an upper limit. 

The standard deviation has a transient response (Figure 2). This follows from (6.1) with 
k=0  and is due to the great variance, qoll  and qo22 , accepted for v(0) and r(0) respectively. 
The estimates for v(k) and r(k) become better when k > 1, as a result of which sy(k) decreases 
until the steady state is attained. 

The coefficients A41, A42, A43 and K4 of the estimator (6.1) also have a transient response 
(see Figure 5 for A4a), as follows from an analysis of (5.10), (5.7) and (5.8). The stationary values 
are presented in the table below. The numbers in brackets indicate the time in seconds at which 
the values became stationary. A44 has the constant value 1: 

TABLE 2 

A41 A42 A43 K 4  A4 t  A42 A43 K4 

1 +4.411 +50.570 +37.413 +2.587 4 +4.324 +42.516 +36.679 +3.321 
(200) (285) (280) (280) (140) (240) (210) (210) 

2 +4.217 +111.374 +53.750 -13.750 5 +4.499 +61.983 +38.794 +1.206 
(185) (280) (265) (265) (230) (375) (315) (315) 

3 +4.052 +163.059 +67.637 -27.637 6 +4.584 +61.351 +37.531 +2.469 
(175) (295) (260) {260) (250) (420) (380) (380) 

There is some agreement between these stationary values and the coefficients of the dif- 
ferential equation (2,3). The discrete version of this equation with a sampling period T= 5 
seconds and a ship speed U = 8.- m/s is : 
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y(k) = 5 v ( k -  1 ) + 4 0 ~ ( k -  1 ) + y ( k -  1). (7.1) 

A,1 obtains a stationary ~alue of approximately 5. The value of A44 is the same as in (7.1). 
The sum of A43 and K 4 always amounts to 40. In the estimator (6.1) this amount  is obviously 
divided over the yaw-angle observation and estimation. The more noise is contained in the 
observation, the greater the value attached to the estimate of the yaw angle. 

8. Condu~on 

The forces and moments  acting on the ship due to the waves have been approximated by a 
white noise process. Starting from this approximation a very good estimate of the lateral 
position of the ship can be made. This estimate is better according as less noise is contained in 
the yaw-angle measurement. However, the sensors will then be more expensive. Upon  a change 
in the system coefficients of the ship the standard deviation of the estimation error remains 
within reasonable bounds. 
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